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A remark on C ∞ definable equivalence

Anna Valette and Guillaume Valette (Kraków)

Abstract. We establish that if a submanifold M of Rn is definable in some o-minimal
structure then any definable submanifold N ⊂ Rn which is C ∞ diffeomorphic to M , with a
diffeomorphism h : N → M that is sufficiently close to the identity, must be C ∞ definably
diffeomorphic to M . The definable diffeomorphism between N and M is then provided by
a tubular neighborhood of M .

1. Introduction. The framework of o-minimal structures is well adapted
to both analysis and geometry, and definable mappings have many finiteness
properties that are valuable for applications. It is however not always easy
to construct definable diffeomorphisms. For instance, smooth trivializations
are often generated by integration of a vector field [2] and the flow of a
definable vector field may fail to be definable in the same structure. Fur-
thermore, M. Shiota gave examples of algebraic smooth manifolds that are
C∞ diffeomorphic but not Nash diffeomorphic (i.e. not semialgebraically C∞

equivalent) [4]. This points out that C∞ equivalence of definable manifolds
does not guarantee definable C∞ equivalence.

In this note, we show that such pathologies cannot arise if the diffeomor-
phisms considered are sufficiently close to the identity. Namely, we establish
that if a submanifold M of Rn is definable in some o-minimal structure then
any definable submanifold N ⊂ Rn which is C∞ diffeomorphic to M , with
a diffeomorphism h : N → M that is sufficiently close to the identity, must
be definably C∞ diffeomorphic to M (Theorem 2.1). The definable diffeo-
morphism between N and M is then provided by a tubular neighborhood
of M .

We briefly recall that an o-minimal structure expanding the real field
(R,+, ·) is the data for every n of a Boolean algebra Dn of subsets of Rn

containing all the algebraic subsets of Rn and satisfying the following axioms:
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(1) If A ∈ Dm, B ∈ Dn, then A×B ∈ Dm+n.
(2) If π : Rn × R → Rn is the natural projection and A ∈ Dn+1, then

π(A) ∈ Dn.
(3) D1 is nothing else but all the finite unions of points and intervals.

A set belonging to the structure D is called a definable set and a map whose
graph is in the structure D is called a definable map. Given B ⊂ Rk, we say
that (Zt)t∈B is a definable family of subsets of Rn if for each t ∈ B, Zt ⊂ Rn

and
⋃

t∈B{t} × Zt ∈ Dk+n (in particular, Zt is definable for all t). A family
(φt)t∈B of mappings is said to be definable if the family of their graphs is a
definable family of sets.

Given a definable set A ⊂ Rn, we denote by D+(A) the set of positive
definable continuous functions on A.

Given a mapping f : A → B with A ⊂ Rn, B ⊂ Rk, we denote by |f |
the function which assigns to x ∈ A the number |f(x)|. Here we stress that
since |f | is not a real number but a function, this does not define a norm on
the space of mappings.

If f is a differentiable mapping, we denote by dxf its derivative at x
and we will write |dxf | for the norm of dxf (as a linear mapping) derived
from the euclidean norm | · |. We will write |df | for the function defined by
x 7→ |dxf |. We then set

|f |1 := |f |+ |df |.
We will denote by B(x, r) the open euclidean ball of radius r centered

at x, and by A the closure of A in the euclidean topology.

2. Definable diffeomorphisms via retractions. Let us recall that
given a definable C p submanifold M of Rn, p ≥ 2, there is a definable
neighborhood U of M in Rn and a definable retraction r : U → M such that
for all x ∈ U , r(x) is the point that realizes the distance from x to M . The
vector x − r(x) is then orthogonal to the tangent space to M at r(x) and
we say that (U, r) is a tubular neighborhood of M . The mapping r is at least
C p−1 and, if M is C∞, then so is r [3], [5, Proposition 2.4.1]; see also [1,
Theorem 6.11].

Theorem 2.1. Let M ⊂ Rn be a closed definable C 2 submanifold and
let (U, r) be a definable tubular neighborhood of M . There exists ε ∈ D+(Rn)
such that if N ⊂ Rn is any definable C 2 submanifold for which there exists a
C 1 diffeomorphism h : N → M satisfying |h− id|N |1 < ε then N is contained
in U and the restriction r|N : N → M is a C 1 diffeomorphism.

Proof. Let N ⊂ Rn be a definable C 2 submanifold and h : N → M
a diffeomorphism such that |h(x) − x|1 < ε(x) for some ε ∈ D+(Rn). We
assume ε < 1 and we will put extra requirements on ε on the way. For
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δ ∈ D+(M) define

(2.1) Uδ := {x ∈ U : dist(x,M) < δ(r(x))},

where dist(x,M) is the euclidean distance of x to M . If δ is sufficiently
small we have Uδ ⊂ U . Replacing U with Uδ for some small δ, we can
assume that |dxr| is bounded on bounded sets. Moreover, the assumption
|h − id|N |1 < ε entails dist(x,M) < ε(x) for every x in N and therefore
N ⊂ Uδ if ε(x) ≤ η(x) := inf {δ(z)/2 : |z| < |x|+ 1}.

Let x ∈ N and take a unit vector u ∈ TxN . Put v := dxh(u). By
assumption, we have |u− v| < ε(x). Observe that

(1) |dxr(u)− dxr(v)| ≤ |u− v| |dxr|,
(2) |dh(x)r(v)− u| = |v − u| (as r is the identity on M),
(3) by continuity of x 7→ dxr, there is a definable function µ(x) > 0 such

that if |x− h(x)| < µ(x) then |dxr(v)− dh(x)r(v)| < 1
8 .

By the above, if ε(x) < min
{
η(x), µ(x), 1

8(|dxr|+1)

}
we have

|dxr(u)− u| ≤ |dxr(u)− dxr(v)|+ |dh(x)r(v)− u|+ |dxr(v)− dh(x)r(v)|

< ε(x)(|dxr|+ 1) +
1

8
<

1

4
,

which shows that dx(r|N ) is an isomorphism, implying that r induces a local
diffeomorphism on N .

To prove that it is a diffeomorphism on N , we start by showing that the
restriction r|N is proper. Observe that N is closed. Indeed, take (xi) ⊂ N

such that xi → x ∈ N . As h(xi) is bounded and M is closed there is a
y ∈ M such that h(xi) → y (extracting some subsequence if necessary),
which implies x = h−1(y) ∈ N , showing that N is closed. Now, notice that
if |xi| → +∞ then, as |r(xi)− xi| ≤ |h(xi)− xi| < ε(xi), the sequence r(xi)
must go to infinity as well. Since N is closed, this shows that the restriction
of r to N is proper.

Hence, by Ehresmann’s theorem r|N is a locally trivial fibration above
every connected component of M . We will show that it is indeed one-to-
one. For this purpose, let us fix any x in M . There is q > 0 such that
Vx := B(x, q) ∩M is simply connected and hence r|N is trivial above Vx.

We first show by way of contradiction that if ε is small enough (depending
on x) then r−1(x) ∩ N must be reduced to a single point. Write r−1

|N (x) =

{x1, . . . , xk}, suppose k ≥ 2, and notice that

r−1
|N (Vx) = V1 ∪ · · · ∪ Vk

is a disjoint union of neighborhoods Vi of xi in N respectively. Take now y ∈
B(x, q/8)∩M and set ε0 := supK ε, where K is some compact neighborhood
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of x containing all the sets that we are considering. Let us observe that

|h−1(y)− x| ≤ |h−1(y)− y|+ |y − x| < ε0 + q/8,

which means that for ε0 < q/16, we have h−1(y) ∈ B(x, q/4), and conse-
quently

h−1(B(x, q/8) ∩M) ⊂ B(x, q/4).

Moreover, since

|r(h−1(y))− x| ≤ |r(h−1(y))− h−1(y)|+ |h−1(y)− y|+ |y − x|
< q/16 + q/16 + q/8

we have r(h−1(y)) ∈ B(x, q/4), and hence

h−1(B(x, q/8) ∩M) ⊂ V1 ∪ · · · ∪ Vk.

Since the last union is disjoint, we can assume that

h−1(B(x, q/8) ∩M) ⊂ V1.

Furthermore, we have

|h(x2)− x| < |h(x2)− x2|+ |x2 − x| < 2ε0 < q/8,

and hence x2 ∈ h−1(B(x, q/8) ∩M), which contradicts the fact that V1 and
V2 are disjoint, establishing that r−1(x) ∩ N must be reduced to a single
point.

Choose now one point in each connected component of M , say z1, . . . , zl.
By the above, for ε small enough, the set r−1(zi) ∩N is reduced to a single
point for all i ≤ l. Since r|N : N → M is a locally trivial fibration, it must
be one-to-one.

We turn to show that r|N is onto. As it is a locally trivial fibration over
each connected component of M , it suffices to show that r(N) contains at
least one point in every connected component. Take any x ∈ M and observe
that, for ε small enough, h−1(x) ∈ U and r(h(x)) is a point close to x, which
therefore must belong to the same connected component of M as x, if ε is
sufficiently small.

Definition 2.2. Let M be a C k submanifold of Rn with k ≥ 2 (possibly
infinite). Fix any ε ∈ D+(M) and a positive integer p ≤ k. A definable
deformation of M is a definable family (Zt)t∈[0,1] of C p submanifolds Zt ⊂ Rn

with M = Z0. A deformation (Zt)t∈[0,1] is (ε,C p) trivial if there exists a
family of C p diffeomorphisms φt : M → Zt, t ∈ [0, 1], C p with respect to t
and satisfying φ0(x) = x for all x, as well as

(2.2) |x− φt(x)| < ε(x) and |u− dxφt(u)| < ε(x),

for every x ∈ M = Z0 and every unit vector u ∈ TxM . When (φt)t∈[0,1] is
a definable family of mappings, we say that (Zt)t∈[0,1] is definably (ε,C p)
trivial.
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Corollary 2.3. Let M ⊂ Rn be a closed, definable, C k, k ≥ 2 (possibly
infinite), submanifold and let ε ∈ D+(M). There exists δ ∈ D+(M) such
that any (δ,C k−1) trivial definable deformation of M is (ε,C k−1) definably
trivial.

Proof. Let ε ∈ D+(M) and take a tubular neighborhood (U, r) of M .
Take some δ sufficiently small for U to contain the closure of Uδ (see (2.1)).
The derivative of r is then uniformly continuous on every bounded subset
of Uδ. Let (Zt)t∈[0,1] be a (δ,C k) trivial deformation, with corresponding
family of diffeomorphisms φt : M → Zt. If δ is sufficiently small, by Theo-
rem 2.1 (applied with h := φ−1

t for each t) the restriction rt of r to each Zt

induces a definable diffeomorphism.
We are going to verify that for δ sufficiently small we have, for all x ∈ Zt

and every unit vector u ∈ TxZt (for any t)

(2.3) |x− rt(x)| < ε(rt(x)) and |u− dxrt(u)| < ε(rt(x)).

Before proving these two inequalities, let us make it clear that this yields
the desired fact. We may assume ε < 1/2. Setting y = rt(x) ∈ M and v =
dxrt(u)
|dxrt(u)| ∈ TyM (if x ∈ Zt and u ∈ TxZt is a unit vector), (2.3) immediately
entails |dxrt(u)| ≥ 1/2 so that

|(rt)−1(y)− y| < ε(y) and |dy(rt)−1(v)− v| < 2ε(y),

showing (2.2) for r−1
t (up to the constant 2).

We can assume that δ < 1. Observe that for such x,

(2.4) |rt(x)− x| = dist(x,M) ≤ |x− φ−1
t (x)|

(2.2)

≤ δ(φ−1
t (x))

and hence

(2.5) |rt(x)− φ−1
t (x)| ≤ 2δ(φ−1

t (x)) ≤ 2.

For δ′(y) := sup {3δ(z) : z ∈ M ∩B(y, 2)}, y ∈ M , we deduce from (2.4) and
(2.5) that

(2.6) |rt(x)− x| ≤ δ′(rt(x)).

Now, as x 7→ dxr is uniformly continuous on bounded sets, if δ is small
enough we have on Uδ, for each unit vector u ∈ Trt(x)M ,

(2.7) |dxr(u)− u| = |dxr(u)− dr(x)r(u)| ≤ ε(rt(x)).

This is almost the desired estimate (together with (2.6)). The problem is
that we need such an estimate for u ∈ TxZt with x ∈ Zt ⊂ Uδ. Therefore,
we are going to estimate the distance between TxZt and Trt(x)M (see (2.8)
and (2.9) below).
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Denote by Gm
n , m = dimM , the Grassmannian of m-dimensional linear

subspaces of Rn, which we endow with the metric
ρ(P,Q) := sup

a∈P, |a|=1
inf
b∈Q

|a− b|.

Observe that

(2.8) ρ(TxZt, Tφ−1
t (x)M)

(2.2)

< δ(φ−1
t (x)) < δ′(rt(x)),

by definition of δ′ and (2.5). Moreover, since the tangent bundle of M is at
least C 1, by (2.5), for δ sufficiently small, we have
(2.9) ρ(Trt(x)M,Tφ−1

t (x)M) < ε(rt(x)).

By (2.8) and (2.9), for δ small enough we get
ρ(TxZt, Trt(x)M) < 2ε(rt(x)),

which together with (2.4) and (2.7) yields (2.3).
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