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Abstract. This paper studies the variation of the volume of a subanalytic family of sets.
More precisely we are interested in the variation of the Lelong number. We prove that
the Lelong number is continuous along a stratum of a Whitney subanalytic stratification
and locally Lipschitz when the stratification satisfies the Kuo-Verdier condition. This
problem had been studied by G. Comte.

1. Introduction

The purpose of this paper is to prove that the Lelong number is continuous along the
strata of a subanalytic Whitney stratification. The Lelong number of a real subanalytic
set is given by the limit of the volume of the intersection of this set with a ball (whose
radius tends to zero) divided by the volume of this ball (see (2.1)).

The idea is to give a counterpart of a well known result about complex analytic sets in
the real case. A result due to Draper yields that, for a complex analytic set, the Lelong
number is equal to the multiplicity. On the other hand, a famous theorem of Hironaka
[Hi] states that the multiplicity is constant along the strata of a Whitney stratification of
a complex analytic set. In the 80’s Kurdyka and Raby [KR] extended the notion of Lelong
number to the real case. Hence, the idea is also to explain that the Lelong number is a
good substitute of the multiplicity for subanalytic geometry.

In [C1] G. Comte proved a result going in this direction: he proved that the Lelong
number is continuous along a stratum of a subanalytic stratification which satisfies the
(w) condition of Kuo -Verdier by studying the discriminant of generic projections.

We prove in section 4.1 that the Whitney condition is sufficient to ensure the continuity
of the Lelong number along the strata of a subanalytic stratification. Then, we generalize
our method to improve the result of [C1] by showing that Kuo-Verdier condition actually
implies that the Lelong number behaves like Lipschitz function along the strata.

We show how some topological trivializations (not necessarily bi-Lipschitz), which are
close to the identity, can induce some stability for the volume of subanalytic families. Such
arguments may no longer be applied to sets which are not subanalytic, the finiteness of the
fibers of generic projections being essential. We shall give an equimultiplicity proposition
and then make use of the Cauchy-Crofton formula which relates the multiplicity to the
volume. The multiplicities are compared outside a set whose measure can be bounded. For
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this purpose, we first recall the Cauchy-Crofton formula and give ”some uniform bounds”
for the volume of subanalytic families in section 3.

2. Definitions, notations and main theorem

Notations. Throughout this paper, the letter C may stand for various strictly positive
constants, when no confusion is possible. By ”subanalytic set” we will mean ”global
subanalytic set”.

For r ∈ R, strictly positive, we denote by B(0; r) the closed ball centered at 0 and of
radius r, and by S(0; r) the sphere of center 0 and radius r. Given l ≤ n we will write Gl

n

for the Grassmannian of l dimensional vector subspaces of Rn.
Let A be a subanalytic subset of Rn × Rm. We will consider such a subset as a family

of subanalytic subsets of Rn parameterized by Rm. For U ⊆ Rm we will denote by A|U
the subfamily {q = (x; t) ∈ Rn ×Rm/q ∈ A, t ∈ U}, and for t ∈ Rm we will denote by At,
the fiber of A at t, namely {x ∈ Rn/q = (x; t) ∈ A}.

We will denote by Hl the l-dimensional Hausdorff measure. Given a subanalytic set A
of Rn and a real number ε we will denote by A≤ε the neighborhood of A defined by

{x ∈ Rn/d(x;A) ≤ ε}.

We are going to study the Hausdorff measure of subanalytic sets. For this, if X is
the germ of a subanalytic subset of Rn at 0, we define the functions ψ, ψ̃, and ψ̂ in the
following way:

ψ(X; r) := Hl(X ∩B(0; r)),
where l is the dimension of X,

ψ̃(X; r) :=
ψ(X; r)
µlrl

where µl is the volume of the unit of ball in Rl, and

ψ̂(X; r) = Hl−1(X ∩ S(0; r)).

The limit

(2.1) θ(X;x) := lim
r→0

Hl(X ∩B(x; r))
µlrl

is called the density or the Lelong number of X at x. The existence of this limit for a
subanalytic set has been proved by Kurdyka and Raby in [KR]. Later, in [CLR] G. Comte,
J. M. Lion and J. P. Rolin proved that the function ψ has a log-analytic expansion. For
irreducible complex analytic sets, a result due to Draper states that this number is the
multiplicity.

For the sake of clarity we recall the definitions of the Whitney (b) condition and of the
Kuo-Verdier (w) condition.

Definition 2.0.1. Let A be a subanalytic subset of Rn. A subanalytic stratification of
A is a locally finite partition of A into C2 subanalytic submanifolds of Rn. We call the
elements of this partition strata.

A couple of strata (X;Y ) is said to be Whitney (b) regular at y ∈ Y if for any sequences
(xk) and (yk), of points of X and Y respectively, converging to y and such that there exist
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l ∈ Sn−1 and τ ∈ Gp
n (where p = dimX) with τ = limTxk

X and l = lim xkyk
|xkyk| , we have

l ∈ τ .
A couple of strata is said to be (w) regular at y0 ∈ Y if there exists a constant C such

that for x ∈ X and y ∈ Y in a neighborhood of y0:

(2.2) δ(TyY ;TxX) ≤ C|y − x|
where δ(E;F ) = sup

u∈E,|u|=1
d(u;F ) (with d the Euclidian distance) for E and F vector

subspaces of Rn.

It is well known that the conditions (b) and (w) both imply the topological triviality
along the strata.

In this paper we prove:

Theorem 2.0.2. Let A be a closed subanalytic set stratified by a subanalytic stratification.

(1) If all the strata satisfy the Whitney (b) condition with respect to Y then the Lelong
number of A is continuous along this stratum.

(2) If all the strata satisfy the (w) condition of Kuo-Verdier then the Lelong number
of A is locally Lipschitz along the strata.

Remark 1. This article deals with subanalytic sets. However the results (and the proofs)
can be written in the language of o-minimal geometry replacing ”subanalytic” by ”defin-
able”. In this case, the results assuming the Whitney (b) condition require the o-minimal
structure to be polynomially bounded, whereas those assuming the Verdier condition are
true over any o-minimal structure.

Given a positive subanalytic function α : R × Rm → R we introduce the notion of
α-approximation of the identity in the following way:

Definition 2.0.3. LetA and B be two families of sets of Rn×Rm. We call α-approximation
of the identity a family of mappings h : (A; 0) → (B; 0) of type h(x; t) = (ht(x); t) (with
ht(0) = 0), such that the germ of each ht is the germ of a homeomorphism, for which we
can find a strictly positive constant C such that for every t

(2.3) |ht(x)− x| ≤ Cα(r; t)

and

(2.4) |h−1
t (x)− x| ≤ α(r; t)

for all x ∈ B(0; r) for which the above mappings are defined, and any r sufficiently close
to zero.

Let A be a subanalytic subset of Rn of dimension l. For P ∈ Gl
n we will denote by πP

the orthogonal projection on P . As a consequence of Gabrielov’s complement theorem
[G], we know that there exists an integer N such that for any vector space P in Gl

n and
for all q ∈ P either card (π−1

P (q) ∩ A) ≤ N or card (π−1
P (q) ∩ A) = ∞. This provides a

finite partition of P into subanalytic subsets:

KP
j (A) := {q ∈ P/card π−1

P (q) ∩A = j},

j ∈ {0, . . . , N,∞}. Then the l dimensional vector spaces P such that KP
∞(A) = ∅ are

dense in Gl
n.
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3. Preliminary results

In this section we prove some general results about the volume of subanalytic families
that we will use in the next section.

A key argument of the main proofs of this paper is the Cauchy-Crofton formula. This
is a classical result which relates the Hausdorff measure of a set to the measure of its
projections. We recall the formula without proof. We refer the reader to [F] (Theorem
2.10.15). We do not stipulate the measure γl,n on the Grassmannian which is involved in
this formula, since we will not need anything else than the fact that it is a finite measure.
The formula given in [F] actually applies to a more general class of sets than subanalytic
sets. We state this formula and then rewrite it in our setting using the properties of
subanalytic sets that we recalled at the end of the previous section.

Proposition 3.0.4. Let E be a subanalytic set of dimension l < n. Then:

(3.5) Hl(E) = β(l;n)−1

∫
P∈Gl

n

∫
y∈P

N(πP ;E; y) dHl(y)dγl,n(P ),

where β(l;n) is a constant, and N(πP ;E; y) is the cardinality of the fiber π−1
P (y) intersected

with E.

As we said above, if E is a subanalytic set, the cardinality of finite fibers of linear
projections is uniformly bounded. So, for any P ∈ Gl

n the integers j for which KP
j (E) is

nonempty are bounded by an integer N and the Cauchy-Crofton formula becomes:

(3.6) Hl(E) = β(l;n)−1

∫
P∈Gl

n

N∑
j=1

jHl(KP
j (E)) dγl,n(P ).

In order to study the variation of the volume of a family we need some preliminary
results. They will provide uniform bounds for the volume of sets and neighborhoods of a
subanalytic family which is indexed on a compact set.

We shall make use of a second basic formula of geometric measure theory. We again
refer the reader to [F]. This formula, sometimes called the coarea formula, relates the
volume of a set to the volume of the fibers of a differentiable map. We recall this formula
in a particular case which will be enough for the purpose of this paper. More precisely:

Proposition 3.0.5. Let A be a C1 submanifold of Rn of dimension l > 1 and let f : A→ R
be a differentiable function. Then:

(3.7)
∫

y∈R
Hl−1(A ∩ f−1(y))dH1(y) =

∫
x∈A

|∂xf |dHl(x).

where |∂xf | is the norm of the gradient of f .

Note that it is enough to assume that f is smooth above almost every point in the sense
that it suffices to assume that the image of the set of y for which f fails to be smooth at
some point of f−1(y) is of measure zero.

Two preliminary propositions. The point is that the constants given by following two
propositions do not depend on the parameters provided they stay in a given compact set.
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Proposition 3.0.6. Let A ⊆ Rn×Rm be a subanalytic family of subsets of Rn of dimension
l and let K be a compact subset of Rm. For each real number r0, there exists a constant
C such that for any t ∈ K and for any real number 0 ≤ r ≤ r0 :

ψ(At; r) ≤ Crl.

Proof. In the case l = n the set At ∩ B(0; r) is included in the ball B(0; r). If l < n, it is
a consequence of the case l = n and (3.6). �

The following proposition enables us to bound uniformly with respect to ε the volumes
of neighborhoods of the fibers of a subanalytic family.

Proposition 3.0.7. Let A ⊆ Rl × Rm be a subanalytic family of subsets of Rl and let K
be a compact subset of Rm. Assume that dimAt = k < l for any t ∈ K. Then for each
real r0 there exists a constant C such that for all t in K, for all ε ∈ [0; 1] and for all real
0 ≤ r ≤ r0:

(3.8) ψ((At)≤ε; r) ≤ Crl−1ε.

Moreover, in the case k = l, then for each positive real number r0 there exists a constant
C such that for all t ∈ K and for all 0 ≤ r ≤ r0:

ψ((At)≤ε; r) ≤ C rl−1ε+ ψ(At; r).

Proof. The norm of the gradient of the distance function to a subset of Rn is equal to 1
at each point where this function is differentiable. Moreover the family

A′ = {(x; t;α) ∈ Rl × Rm+1/d(x;At) = α}

is a subanalytic family of subsets of Rl. So, by the previous proposition, there exists a
constant C such that for all (t;α) ∈ K × [0; 1] we have: ψ(A′(t;α); r) ≤ Crl−1. Thus, we
can write:

ψ((At)≤ε; r) =
∫

(At)≤ε∩B(0;r)
dHl

≤
∫ ε

0
ψ(A′(t;α); r)dH

1(α) (by ( 3.7))

≤ Crl−1ε.

In the case where all the At are of dimension l, we set Ct = cl(At) \ Int(At). Thus
the sets Ct form a subanalytic family of sets of dimension strictly less than l. Since
(At)≤ε ⊆ (Ct)≤ε ∪ At, the result follows from the case k < l. �

4. Density of subanalytic sets

4.1. Density and the Whitney (b) condition. In this section we prove that the Lelong
number is continuous along a stratum satisfying the Whitney (b) condition (Theorem
2.0.2). Thus, for this section, we fix a closed subanalytic set A ⊆ Rn+m of dimension l. We
will assume that A is stratified by a family of C2 subanalytic manifolds {Y,X1, . . . , Xν}.
Let us also assume that all the pairs (Y ;Xi) are Whitney (b) regular.
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Denote by Ai the union of the strata of this stratification of dimension less than or equal
to i. As in [C2], to study the behavior of the Lelong number along Y , we will assume that
Y = {0} × Rm. This is no loss of generality since we may find a coordinate system Φ of
Y such that d0Φ = Id. We will denote by π the orthogonal projection onto Y .

It will be convenient to work with the family:

A = {(x;u; t) ∈ A× Rm/(x;u+ t) ∈ A}.

Now the germ of At at zero is the germ of A at (0; t) ∈ Y (only last m variables are
considered as parameters).

Similarly, we will denote by Ai the family obtained from Ai:

{(x;u; t) ∈ Ai × Rm/(x;u+ t) ∈ Ai}.

We will need another proposition to bound, uniformly in the parameter t, the variation
of the Hausdorff measure of the fibers of a subanalytic family. This one relies on the
assumption of the Whitney condition. More precisely:

Proposition 4.1.1. For any compact subset V of Y there exist a strictly positive real
number r0 and a constant C such that if r and r′ are positive real numbers satisfying
r′ ≤ r ≤ r0 we have for any t ∈ V :

|ψ(At; r)− ψ(At; r′)| ≤ Crl−1|r − r′|.

Proof. Let λ denote the distance to the stratum Y restricted to the regular locus of A (by
regular locus we mean the points at which the set A is a smooth manifold). We wish to
apply formula (3.7), so we first prove that |∂qλ| tends to 1 when q tends to the origin. The
norm of the gradient of the distance to Y is 1 and this vector is collinear to the secant
qπ(q). Given a point (x; t) of A let us denote by X(x;t) the stratum which contains this
point. As all the strata satisfy the Whitney (b) condition and V is compact, there exists
a subanalytic function φ : R → R tending to zero at the origin such that for all t in V and
for all x in X(x;t):

δ(Rx;TxX(x;t),t) ≤ φ(|x|)
where X(x;t),t is the fiber of X(x;t) at t (see Definition 2.0.1 for the definition of δ).

This implies that |∂qλ| tends to 1 uniformly in t on X|V since the projection of the
gradient onto the tangent space to X(x;t),t tends to the gradient itself when we approach
the origin.

Let D = {(x; t; r) ∈ Sm+n−1(0; r0) × Rm × R/ r
r0
x ∈ At, r ≤ r0, t ∈ V }. If r0 is chosen

small enough the family D is a subanalytic family of sets of dimension (l− 1) (considering
t and r as parameters).

Now since the family (Dt,r)t∈V
r≤r0

is a subanalytic family of sets then, thanks to the

Cauchy-Crofton formula, there exists a constant C such that:

Hl−1(Dt,r) ≤ C.

But by the definition of the family Dt,r we have:

Hl−1(Dt,r) = rl−1
0

ψ̂(At; r)
rl−1

.
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This is equivalent to
ψ̂(At; r) ≤ Crl−1

for a constant C.
So, applying (3.7) on the regular locus of At, we can write for r′ ≤ r ≤ r0 with r0 small

enough:

|ψ(At; r)− ψ(At, r
′)| = |

∫
At∩B(0;r)\B(0;r′)

dHl|

≤ 2|
∫
At∩B(0;r)\B(0;r′)

|∂qλ|dHl(q)| (since |∂qλ| tends to 1)

= 2
∫ r

r′
ψ̂(At; s)dH1(s)

≤ 2Crl−1

∫ r

r′
dH1

≤ 2Crl−1|r − r′|.

�

Remark 2. (1) In particular if A is a subanalytic set we can find real number r0 such
that for all r′ ≤ r ≤ r0:

|ψ(A; r)− ψ(A; r′)| ≤ Crl−1|r − r′|.

For a subanalytic family of sets we may drop the hypothesis of Whitney (b) condi-
tion if we weaken the conclusion. Namely, if we do not assume that the Whitney
condition holds we may prove that: for each t there exists r0 such that the latter
equality is fulfilled (that is to say we allow r0 to depend on t).

(2) The assumption of the Whitney (b) condition can be weakened. It is clear from
the proof that it is sufficient to assume that the Milnor radius is stable [BK, O].
It seems also that in this case the converse could be proved. We mean that the
conclusion to Proposition 4.1.1 may imply that the Milnor radius is stable. If the
Milnor radius is stable for all strata we have topological triviality. We would get
a sufficient condition for topological stability.

We now prove an isotopy lemma. It is well known [Ma] that Whitney stratifications are
topologically trivial along the strata. We need a precise statement in our context which
will be useful in the proof of Proposition 4.1.3 to bound the measure of the set above
which the respective multiplicities coincide for a generic projection.

Proposition 4.1.2. Let γ :] − δ; δ[→ Y be an analytic arc, γ(0) = 0. Then there exist
a strictly positive real number η and a map h : A|γ([0;η[) \ B → (A0 × γ([0; η[)) \ B′ which
is an α−approximation of the identity with α(r; t) = |t|1−er with e < 1, and where the
families B′ and B satisfy

(i) B′t ⊆ {q ∈ A0/d(q;Al−1
0 ) ≤ |t|1−e|q|}

(ii) Bt ⊆ {q ∈ At/d(q;Al−1
t ) ≤ |t|1−e|q|}.

for t sufficiently close to zero in the image of γ.
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Proof. We construct the isotopy by integration of vector fields as in Thom-Mather isotopy
lemma [Ma]. Note that the strata Xj are not necessarily Whitney (b) regular with respect
to each other. So, we may only prove uniqueness of some integral curves (which are
sufficiently far away from the lower dimensional strata) and we shall define the desired
family of homeomorphisms on Ai

|γ([0;η[), by induction on i. So, for the induction hypothesis
just replace in the proposition for a A by Ai and l by i.

For i = m the result is clear. So, we assume that the result is true for i ≥ m.
The stratification of A given by the Xj , Y ′ := γ(]−δ; δ[) and Y \Y ′ is still (b) regular (Y ′

is not a smooth stratum but we will deal with γ[0; δ[). As the arc γ constitutes a stratum
of dimension one, by [K] or [OT1] the tangent spaces satisfy the following estimation:

δ(Ty Y
′;TxXj) ≤ C

|y − x|
|π′(x)|e

(where π′ is the orthogonal projection on Y ′) for a real number e < 1 in a sufficiently
small neighborhood of the origin.

By standard arguments [Ve, Ma, OT1] we may obtain a stratified unit vector field v
defined on Ai+1, tangent to Y ′ and tangent to the Xj ’s, and satisfying:

(4.9) |v(q)− v(π(q))| ≤ C
|q − π′(q)|
|π′(q)|e

for some constant C in a sufficiently small neighborhood of the origin.
We may identify Y ′ with {0Rm−1} × R and choose v such that v ≡ (0;−1) on Y ′.

Denote by φ the one-parameter group generated by this vector field. Let φ = (φ1;φ2) ∈
Rn+m−1×R; we also have by (4.9) (again the reader is referred to [OT1] or [OT2]) that:

(4.10) |φ1((q;u); s)− q| ≤ Cs1−e|q|

for any (q;u) ∈ Rn+m−1 × R and s ≥ 0 for which φ is defined. This implies that the
integral curves cannot join Y ′ before s = C

1
e−1 , and thus before s = u if 0 < u < C

1
e−1 . It

is easy to see that the integral curves extend at u and are still unique.
The mapping φ1 will induce the desired trivialization on Ai+1. We first prove that an

integral curve φ((q;u); s), starting from a point (q;u) ∈ Rn+m−1 × Y ′, may not fall into
Ai before s = u, as long as (q;u) is chosen sufficiently ”far away” from Ai (see (4.12)).

Note that by the induction hypothesis there exists an α−approximation of the identity
hi with α(r; t) = t1−er defined on Ai

|{0}×[0;η[. This implies for t ∈ R, considering A as a
family of subsets of Rn+m−1 parameterized by the last variable:

(4.11) dH(Ai
0 ∩B(0; r);Ai

t ∩B(0; r)) ≤ Ct1−er.

for a constant C (where dH(E;F ) = max( sup
x∈E

d(x;F ); sup
y∈F

d(y;E)) is the Hausdorff dis-

tance between sets), so that for q in Ai+1
t such that:

(4.12) d(q;Ai
t) ≥ 4Ct1−e|q|

we have d(q;Ai
t−s) ≥ 2Ct1−e|q| (applying (4.11) two times). Note that φ1((q; t); s) is an

element of Ai+1
t−s and using (4.10) we deduce

(4.13) d(φ1((q; t); s);Ai
t−s) ≥ Ct1−e|q|
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when 0 ≤ s ≤ t.
Therefore, by (4.10), the curve φ((q; t); s) cannot join Ai before s = t if q ∈ Ai+1

t

satisfies (4.12). This proves the existence of the integral curves until at least s = t in a
neighborhood of 0 for such points (q; t). So, we now set

Bt = {q ∈ Ai+1
|{0Rm−1}×[0;η[/d(q;Ai

(0;t)) ≤ 4|q||t1−e}

and for η > 0 sufficiently small:

h : Ai+1
|{0Rm−1}×[0;η[ \ B → A0 × [0; η[

(q; 0; t) 7→ (φ1((x;u+ (0; t)); t); t)

where q = (x;u) ∈ Rn × Rm.
The map ht is a homeomorphism onto its image for each t. By (4.10) it is an α-

approximation of the identity with α = t1−er and e < 1. Let B′(0;t) = A0 \ht(A(0;t) \B(0;t)).
By (4.13) we know that if q ∈ A0 is such that d(q;Ai

0) ≥ 4t1−e|q| then

d(φ(q;−t);Ai
0) ≥ 3|t|1−e|q|

and so
d(φ((q;−t);Ai

(0;t)) ≥ 2t1−e|q|
using (4.11). In consequence φ(q;−t) /∈ Bt. Thus

B′(0;t) ⊆ {q ∈ A
i+1
0 /d(q;Ai

0) ≤ 4t1−e|q|}

as claimed. �

The next proposition is a consequence of this isotopy lemma. More precisely, we are
going to see that such isotopies preserve the cardinality of generic fibers of a projection
through small variations of the parameter in a subanalytic family.

Proposition 4.1.3. For any ε > 0, there exists a neighborhood Uε of 0 in Y , such that
for any P ∈ Gl

n+m there exists a subset K(P ; ε; r; t) of B(0; r) ∩ P such that:

Hl(K(P ; ε; r; t)) ≤ εrl,

and such that for any t ∈ Uε and x ∈ P ∩B(0; r) \K(P ; ε; r; t):

(4.14) card (π−1
P (x) ∩ At ∩B(0; r)) = card (π−1

P (x) ∩ A0 ∩B(0; r)).

Proof. We fix a strictly positive real number r. Since the family A is subanalytic there
exists an integer N such that for all j ≥ N and any P in Gl

n+m we have KP
j (A) = ∅, and

dimKP
∞(A) < l. Let

H(P ; j; t; r) = ∂(KP
j (At ∩B(0; r)))

where ∂ denotes the topological boundary. Now set

H(P ; t; r) =
⋃

j∈N∪{∞}

H(P ; j; t; r)≤2εr.

The family (H(P ; t; r)) t∈B(0;1)
P∈Gl

n+m r≤r0

is subanalytic and is indexed by a compact subset.

We apply Proposition 3.0.7 (identify P with Rl) to get a constant C such that for t ∈
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B(0; 1):

(4.15) ψ(H(P ; j; t; r)≤2εr; r) ≤ Cεrl.

Moreover by Proposition 4.1.1 there exists a constant C (independent of ε) such that

Hl(At ∩B(0; r) \B(0; r − 2εr)) ≤ Cεrl

for all t in B(0; 1).
Let

Mt(r) = πP (At ∩B(0; r) \B(0; r − 2εr))
and

N (r) = πP (A0 ∩B(0; r) \B(0; r − 2εr)).

Of course, a fortiori Hl(Mt(r)) ≤ Cεrl and Hl(N (r)) ≤ Cεrl. We can derive from
Proposition 3.0.7 (again identifying P with Rl):

Hl(Mt(r)≤3εr) ≤ Cεrl

and
Hl(N (r)≤3εr) ≤ Cεrl

for a constant C independent of ε. Finally for t in Rm let

Qt(r) = πP (Al−1
t ).

By Proposition 3.0.7 we again have ψ((Qt)≤εr; r) ≤ Crlε for a constant C independent
of ε. Therefore, now we can set K(P ; ε; r; t) = H(P ; t; r) ∪ H(P ; 0; r) ∪ Mt(r)≤3εr ∪
N (r)≤3εr ∪ (Qt)≤εr ∪ (Q0)≤εr.

By the above we have that

ψ(K(P ; ε; r; t); r) ≤ Crlε.

Therefore, it suffices to check that (4.14) holds outside K(P ; ε; r; t) for t sufficiently
close to zero.

Thanks to the curve selection lemma, it suffices to check it along an analytic curve
γ :]−δ; δ[→ Rm. Let P ∈ Gl

n+m and x ∈ P∩B(0; r)\K(P ; ε; r; t). Let j = card π−1
P (x)∩At,

with t = γ(s), s ≥ 0 fixed, and j′ = card π−1
P (x) ∩ A0. We remark that by definition of

H(P ; t; r) we have
d(x; ∂KP

j (At ∩B(0; r))) > 2εr.

So, over B(x; 2εr), the set At (resp. A0) is the union of j (resp. j′) connected com-
ponents C1, . . . , Cj (resp. C0

1 , . . . , C
0
j′) and πP induces an homeomorphism from Ci (resp.

C0
i ) onto its image. Note that by the preceding proposition, there exists a local trivializa-

tion h : A|γ([0;η[) \ B → (A0 × γ([0; η[)) \ B′ which is an α−approximation of the identity
with α = |t|1−er and e < 1.

But, by the definition of the α-approximations of the identity, we have:

|h−1
t (z)− z| ≤ |t|1−er,

for t sufficiently close to zero in the image of γ and z ∈ B(0; r)∩At \K(P ; r; t; ε) at which
h−1

t is defined.
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Let z ∈ B(x; εr). Since x does not belong to Mt(r)≤3εr, the ball of center x and of
radius εr does not intersect the set Mt(r)≤2εr. Hence, thanks to the definition of M, if
z ∈ Cj0 ∩ π−1

P (z), with j0 ∈ {1, . . . , j}, it is in B(0; r − 2εr).
Note that we have

Bt ⊆ {q ∈ At/d(q;Al−1
t ) ≤ |t|1−e|q|}

which is included in (Qt)≤εr for t small enough. Thus, ht(z) is well defined. So, since
|ht(z) − z| ≤ εr and z ∈ B(0; r − 2εr), the point ht(z) must belong to B(0; r). Moreover
πP (ht(z)) ∈ B(x; 2εr) (again since |ht(z) − z| ≤ εr) and so ht(z) actually belongs to one
of the C0

k . As Cj0 is connected and the C0
k ’s are disjoint, the integer k does not depend

on the point z in Cj0 ∩ π−1
P (B(x; εr)). Let σ(j0) be this integer.

In this way, we have defined a mapping σ from {1, . . . , j} to {1, . . . , j′}. In order to
show j′ ≤ j it suffices to see that σ is surjective.

Let i be an integer between 1 and j′. Let z be the point of π−1
P (x) ∩ C0

i and denote
p = h−1

t (z). Since x /∈ N (r), the point z belongs to B(0; r − 2εr); this implies, using the
inequality |h−1

t (z)− z| ≤ εr, that the point p also belongs to B(0; r).

Moreover (again using that |h−1
t (z) − z| ≤ εr) it is clear that πP (p) ∈ B(x; r − εr).

Thus, there exists an integer i0 such that p ∈ Ci0 , which implies that σ(i0) = i.
By the symmetry of the roles of j and j′ we see that the same argument can prove

j ≥ j′. �

Now we are able to prove the first point of our main result:

Proof of (1) of Theorem 2.0.2. Let ε > 0. By the above proposition we know that for all
P ∈ Gl

n+m there exists a subanalytic subset K(P ; ε; r; t) such that for t in a sufficiently
small neighborhood of the origin in Y :

ψ(K(P ; ε; r; t); r) ≤ Cεrl

and for all x ∈ P ∩B(0; r) \K(P ; ε; r; t) and t ∈ V ,

card π−1
P (x) ∩ At ∩B(0; r) = card π−1

P (x) ∩ A0 ∩B(0; r).

It follows from (3.5) that for any j ≥ 0 and for all P in Gl
n+m. We have:

ψ(KP
j (At ∩B(0; r)) \KP

j (A0 ∩B(0; r)); r) ≤ Cεrl

and
ψ(KP

j (A0 ∩B(0; r)) \KP
j (At ∩B(0; r)); r) ≤ Cεrl.

So we get:

|ψ(KP
j (A0 ∩B(0; r)); r)− ψ(KP

j (At ∩B(0; r)); r)| ≤ Cεrl.

And finally, using (3.6), we get for t sufficiently close to the origin:

|ψ(At; r)− ψ(A0; r)| ≤ Cεrl.

This implies:
|θ(A; (t; 0))− θ(A; 0)| ≤ Cε,

which proves the continuity of the Lelong number at the origin. �
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4.2. The Kuo-Verdier regular case. We will apply a similar argument in the case
where the strata satisfy the (w) condition of Kuo-Verdier. In this case we are going to see
that the method can prove the Lipschitz character of the Lelong number along the strata.
We first study the variation of the volume through an α−approximation of the identity.

So, as in the case of the Whitney (b) condition, we fix a closed subanalytic set A ⊆
Rn × Rm. We assume that A is stratified by a family of C2 subanalytic manifolds
{Y,X1, . . . , Xν}. Again we will assume that Y = {0} × Rm.

It will be convenient to work with the families:

A = {(x;u; t; t′) ∈ A× R2m/(x;u+ t) ∈ A}
and

B = {(x;u; t; t′) ∈ A× R2m/(x;u+ t′) ∈ A}.

Now the germ of A(t;t′) at the origin is the germ of A at (0; t) and the germ of B(t;t′) at
the origin is the germ of A at (0; t′). Note that A and B are two subanalytic families of
sets.

We first give a proposition of the same type of Proposition 4.1.3 in the case where we
have two subanalytic families related by an α−approximation of the identity.

Proposition 4.2.1. Let α be a subanalytic function defined on R × Rm. Let h : A → B
be an α-approximation of the identity and let P be in Gl

n+m. Then for any compact V of
Rm there exists a constant C and a subanalytic subset K(P ; r; t) ⊆ P satisfying

ψ(K(P ; r; t); r) ≤ Cα(r; t)rl−1,

and such that, for any t ∈ V we have for r sufficiently close to zero and for any x ∈
P ∩B(0; r) \K(P ; r; t):

card (π−1
P (x) ∩ At ∩B(0; r)) = card (π−1

P (x) ∩ Bt ∩B(0; r)).

Proof. We define the desired set in a similar way as in Proposition 4.1.3. Nevertheless, as
the situation is now different (since we now work with two families), we give details. First
let:

H(P ; j; t; r) = ∂(KP
j (At ∩B(0; r))) ∪ ∂(KP

j (Bt ∩B(0; r))).
Then, as in the proof of Proposition 4.1.3:

(4.16) ψ(H(P ; j; t; r)≤2α(r;t); r) ≤ Cα(r; t)rl−1.

As the family A and B are subanalytic subsets of Rn×Rm they are Whitney stratifiable.
Moreover we may choose a stratification compatible with {0} × Rm. In consequence, by
Proposition 4.1.1, there exists a constant C such that for r sufficiently small

Hl(At ∩B(0; r) \B(0; r − 2α(r; t))) ≤ Cα(r; t)rl−1

and
Hl(Bt ∩B(0; r) \B(0; r − 2α(r; t))) ≤ Cα(r; t)rl−1

for all t in V .
Let

Mt(r) = πP (At ∩B(0; r) \B(0; r − 2α(r; t)))
and

Nt(r) = πP (Bt ∩B(0; r) \B(0; r − 2α(r; t))).
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Of course a fortiori we have ψ(Mt(r); r) ≤ Cα(r; t)rl−1 and ψ(Nt(r); r) ≤ Cα(r; t)rl−1.
We can deduce using Proposition 3.0.7 that:

ψ(Mt(r)≤3α(r;t); r) ≤ Cα(r; t)rl−1

and
ψ(Nt(r)≤3α(r;t); r) ≤ Cα(r; t)rl−1

for a constant C.
So we set:

K(P ; r; t) = H(P ;At; r) ∪H(P ;Bt; r) ∪Mt(r)≤3α(r;t) ∪Nt(r)≤3α(r;t).

Now we have to show that in P ∩B(0; r) \K(P ; r; t) the cardinal of the fibers of πP is
the same for At and Bt. This can be proved like in the proof of Proposition 4.1.3. �

Proposition 4.2.1 enables us to compare the volumes of subanalytic families which can
be related by an approximation of the identity. Indeed, the Cauchy-Crofton formula relates
multiplicities to the Hausdorff measure of A. From the equality of the multiplicities in the
complementary of a set whose measure is bounded explicitly, we can bound the difference
between the volume of the two given sets. So we state:

Theorem 4.2.2. Let α : R × R2m → R be a subanalytic function. Let h : A → B be an
α−approximation of the identity. Let V be a compact subanalytic subset of R2m. Then
there exists a constant C such that for all t in V :

|ψ(At; r)− ψ(Bt; r)| ≤ Cα(r; t)rl−1.

Proof. This is a consequence of the above proposition and the Cauchy-Crofton formula
(3.6) (see proof of Theorem 2.0.2). �

It is well known that Kuo-Verdier stratifications are also topologically trivial along the
strata ([Ve]). We first state an isotopy theorem which gives the precise statement that we
will need.

Theorem 4.2.3. Recall that we assumed that the stratification of A satisfies the Kuo-
Verdier’s (w) condition. Then there exists a neighborhood U of 0 and a family of mapping
h : A|U×U → B|U×U which preserves A and which is an α−approximation of the identity
with α(r; t; t′) = |t− t′|r.

Proof. The argument is classical. We construct a vector field tangent to the strata of the
stratification of A that we integrate to produce the desired family of homeomorphisms.
The assumption of the (w) condition provides a flow φ satisfying

|π⊥(φ(q; s))− q| ≤ C|s|d(q;Y )

(where π⊥ is the projection on the the orthogonal complement to Y ), for a constant C
(see [Ve]). �

We are now able to prove the Lipschitz character of the Lelong number along Kuo-
Verdier regular stratifications.
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Proof of (2) of Theorem 2.0.2. Let t ∈ Y and let U be a compact neighborhood of t. By
Theorem 4.2.3 there exists an α−approximation of the identity

h : A|U×U → B|U×U

where α(r; t; t′) = |t− t′|r. Now Proposition 4.2.2 implies:

|ψ(A(t;t′); r)− ψ(B(t;t′); r)| ≤ C|t− t′|rl

for a constant C and t and t′ sufficiently close to the origin. This implies the local Lipschitz
character of the Lelong number. �

Note that it is also possible to deduce that if α(r) � r then an α−approximation of
the identity preserves the Lelong number. In consequence the Lelong number is constant
along a stratum of a stratification satisfying the strict Verdier condition.

Remark 3. (1) Let p : Rn → Y be a smooth retraction. It is also possible to prove
similar results for the family of the germs of the fibers of p|A.

(2) The Lipschitz character is local since we work with subanalytic sets. Over an o-
minimal structure it is possible to prove the result with a global Lipschitz constant
(as long as we have a global constant in (2.2)).
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