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ABSTRACT. We introduce a homology theory devoted to the study of
families such as semialgebraic or subanalytic families and in general of any
family definable in an o-minimal structure. This also enables us to derive
local metric invariants for germs of definable sets. The idea is to study the
cycles which are vanishing when we approach a special fiber. We compute
these groups and prove that they are finitely generated.

RESUME.  On introduit une théorie d’homologie pour les familles semi-
algébriques, sous-analytiques et plus généralement pour toute famille défi-
nissable dans une structure o-minimale. Cela permet aussi de définir des
invariants locaux pour les singulariés définissables. L’idée est de considérer
les cycles s’evanouissant lorsque I’on approche une fibre donnée. On calcule
ces groupes et prouve qu’ils sont de type fini.

1. Introduction This note gives an outline of the work carried out in [V4],
where we introduced a homology theory for families of subsets, giving information
about the behavior of the metric structure of the fibers when we approach a
given fiber. This enables us to construct local metric invariants for singularities.
We prove that these homology groups are finitely generated when the family
is definable in an o-minimal structure. This allows us, for instance, to define
an Euler characteristic type invariant which is a metric invariant for germs of
algebraic or analytic sets.

In [V1], the author proved a bi-Lipschitz version of Hardt’s theorem [H]. This
theorem pointed out that semialgebraic bi-Lipschitz equivalence is a good notion
of equisingularity to classify semialgebraic subsets from the metric point of view.
For this purpose, it is also very helpful to find invariants such as homological
invariants.

In [GM], M. Goresky and R. MacPherson introduced intersection homology
and showed that their theory satisfies Poincaré duality for pseudo-manifolds
covering a quite large class of singular sets, which turned out to be of great
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interest. They also managed to compute the intersection homology groups from
a triangulation, yielding that they are finitely generated. In [BB1] L. Birbrair and
J.-P. Brasselet defined their admissible chains to construct the metric homology
groups. Both theories select some chains by putting conditions on the support
of the chains. Our approach is similar in the sense that our homology groups
will depend on a velocity that estimates the rate of vanishing of the support of
the chains.

Our method relies on the results of [V1], where the author showed existence of
a triangulation enclosing the metric type of a definable singular set. To compute
the vanishing homology groups we will not use the triangulation constructed
in [V1] but Proposition 3.2.9 of that paper (which was actually the main step of
the construction). It makes it possible for the results proved below to apply to
not necessarily polynomially bounded o-minimal structures.

It is well known that, given a definable family, we may always study the
evolution of the fibers by studying what is called by algebraic geometers “the
generic fiber” (see Example 2.3.1 for a precise definition).

Therefore if we carry out a homology theory for definable subsets in an
o-minimal structure expanding a given arbitrary real closed field, we will have
a homology theory for families. This is the point of view of the present paper.
Hence, even for families of subsets of R™, the case of an arbitrary real closed
field will be required. Our approach is patterned on one of the classical ho-
mology groups as much as possible. Some statements (Theorem 2.5.1) are close
to those given by Goresky and MacPherson for intersection homology but, of
course, the techniques are radically different since the setting is not the same.

The admissible chains depend on a velocity which is a convex subgroup v of
our real closed field R. For instance, if R is the field of real algebraic Puiseux
series endowed with the order making the indeterminate 7' smaller than any
positive real number, v may be the subgroup

(1.1) {z:3N e N,|z| < NT?}.

The v-admissible chains are the chains having a “v-thin” support. Roughly
speaking, if v is as above, v-thin subsets of R™ are the generic fibers of families
of sets whose fibers collapse onto a lower dimensional subset with at least the
velocity Nt? (if t is the parameter of the family N € N). For instance, let us
consider the cycle given by Birbrair and Gol’dshtein’s example [BG]. Namely,
the subset of X C R* defined by

(1.2) 2?4 ad=T%, zi+4ai=T%.

This set is the generic fiber of a family of tori such that the support of the
generators of H;(X) collapse onto a point at rates TP and T'¢, respectively.
Therefore, if for instance p = 0 and ¢ = 2, then the O-fiber is a circle and this
family of tori is v-thin (with v as in (1.1)).

Taking all the v-admissible chains of a definable set X, we get a chain complex
which immediately gives rise to the v-vanishing homology groups HJ (X). We
will show that these groups are finitely generated (Corollary 2.5.2).
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If X is the set defined by (1.2) with v as in (1.1), the v-vanishing homology
groups depend on p and ¢. For instance, we will prove (see Example 2.4.2)
that if p = 0 and ¢ = 2, then HY(X) = Q (if Q is our coefficient group) and
Hy(X) = Q.

We may summarize this by saying that we get all the T2-thin cycles of X.
The group H}(X) is not always a subgroup of H;(X). In general we may also
have cycles that do not appear in the classical homology groups, i.e., those that
are in the kernel of the natural map H}(X) — H;(X). The following picture
illustrates an example for which such a situation occurs:

Figure 1

This picture represents the generic fiber of a family of spheres collapsing onto
a point in such a way that the cycle a in the middle is collapsing much faster
than the set itself. We see that we have an admissible one-dimensional chain a
that bounds a two-dimensional chain which may fail to be admissible (depending
on the velocity v). Therefore HY (X) # 0 (while Hq(X) = 0).

To make this more precise an explicit example is given after the definition of
the vanishing homology (Example 2.4.1).

1.1.  Notations and conventions. Throughout this paper we work with a fixed
o-minimal structure expanding a real closed field R. Let L be the first or-
der language of ordered fields together with an n-ary function symbol for each
function of the structure. The word definable means £ r-definable.

The letter G will stand for an abelian group (our coefficient group). Singular
simplices will be definable continuous maps c: T; — X, T} being the j-simplex
spanned by 0,eq,...,e; where eq,...,e; is the canonical basis of R7. Some-
times, we will work in an extension k, of R and simplices will actually be maps
c: Tj(k,) — kb where Tj(k,) is the extension of Tj to k,. Given a definable
set X C R"™, we denote by C(X) the chain complex of definable chains with
coefficients in a given group G. We will write |c¢| for the support of a chain c.

By a Lipschitz mapping we will mean a mapping [ satisfying

[f(2) = f(a")] < Nlw — 2|
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for some integer N. It is important to notice that we require the constant to
be an integer, for R is not assumed to be archimedean. A homeomorphism
h: A — R™ is bi-Lipschitz if h and h~! are Lipschitz.

2. Construction of the vanishing homology.

2.1. The velocity v. We shall use some very basic facts of model theory. We
refer the reader to [M] for basic definitions.

The vanishing homology depends on a wvelocity v that estimates the rate of
vanishing of the cycles. This is a convex subgroup v of (R;+), i.e., z,y € v =
z€wvforany z € Rwith z <z <wy.

Notation. Throughout this paper, a velocity v is fixed and u is the point
realizing the corresponding type in k,.

REMARK 2.1.1. Given z € R we may define a velocity Nz by setting
Nz:={r € R:3IN eN,|z| < Nz}

EXAMPLE 2.1.2.  Let k(04) be the field of real algebraic Puiseux series en-
dowed with the order that makes the indeterminate T positive and smaller than
any real number (see [BCR, Example 1.1.2]. Then, as in the above remark, the
element T* gives rise to a subgroup NT*, which is constituted by all the series z
having a valuation greater or equal to k. One could also consider the velocity v
defined by the set of z satisfying |z| < NT* for any N in Q. In the field of In-exp
definable germs of one-variable functions (in a right-hand side neighborhood of
zero) one may consider the set of all the LP integrable germs of series.

2.2. wv-thin sets. We give the definition of the v-thin sets that is required to
introduce the vanishing homology. We denote by GJ the Grassmaniann of
j-dimensional vector spaces of R". Given P € GJ, we denote by 7p the or-
thogonal projection onto P.

DEFINITIONS 2.2.1. Let j < n be integers. A j-dimensional definable subset
X of R™ is called v-thin if there exists z € v such that, for any P € GJ, no ball
(in P) of radius z entirely lies in 7p(X).

For simplicity we say that X is (j;v)-thin if either X is v-thin or dim X < j.
A set which is not v-thin will be called v-thick.

Note that in the above definition it is actually enough to require that the
property holds for a sufficiently generic linear projection m: R" — R/. As we said
in the introduction, roughly speaking, NT2-thin sets of k(0 )" are the generic
fibers of one parameter families whose fibers “collapse onto a lower dimensional
subset at rate at least t2” (if ¢ is the parameter of the family). Also, by convention
R® = {0} so that a 0-dimensional subset is never v-thin. This is natural in the
sense that a family of points never collapses onto a lower dimensional subset.
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Basic properties of (j;v)-thin sets.

(i) If a definable subset A C X is (j;v)-thin and if h: X — Y is a definable
Lipschitz map, then h(A) is (j;v)-thin.

(ii) Given j, Y, X; is (j;v)-thin if and only if X; is (j;v)-thin for any i =
1,....p.

2.8.  Definition of the vanishing homology. Given a definable set X, let C;’(X)
be the G-submodule of C;(X) generated by all the singular chains ¢ such that
le] is (j;v)-thin and |J¢| is (j — 1;v)-thin as well. We endow this complex with
the usual boundary operator and denote by Z7(X) the cycles of C7(X).

A chain o € C}(X) is said v-admissible. We denote by H}(X) the resulting
homology groups which we call the v-vanishing homology groups.

If v is Nz for some 2 € R (see Remark 2.1.1), then we will simply write C (X)
and H?(X) (rather than C}* and H}*#).

Every Lipschitz map sends a (j; v)-thin set onto a (j; v)-thin set. Thus, every
Lipschitz map f: X — Y, where X and Y are two definable subsets, induces
a sequence of mappings f;,: Hj(X) — H}(Y). In consequence, the vanishing
homology groups are preserved by definable bi-Lipschitz homeomorphisms.

As we said in the introduction, this homology gives rise to a metric invariant
for families (preserved by families of bi-Lipschitz homeomorphisms) by consid-
ering the generic fiber as described in the following example.

ExXAMPLE 2.3.1.  With the notation of Example 2.1.2, given an algebraic
family X C R™ x R defined by fi = --- = f, = 0, we define the generic fiber of
X as Xo, == {2z € k(04)" : fi(x;T) = -+ = fp(a;T) = 0}. Hence, HY(Xo, ) is
a metric invariant of the family.

2.4. Two examples To illustrate the definition we provide two concrete exam-
ples.

EXAMPLE 2.4.1. We first compute the homology groups on an example
similar to the one sketched on Figure 1. Let

X(e) = {(z;y;2) € k(0.)? : (x —e(1 =TH)? +9* + 22 = 1,ex > 0}

for e = £1. Then let X := X(1) U X(—1) and A = X(1) N X(-1).

Let us simply consider the velocity 72. The homology groups of X could
actually be determined for any Velomty It can be comguted from the definition
that HT" (X) ~ Q. We also have HY* (X) ~ 0 and H (X) ~ 0.

Although this is a consequence of the definitions, the computation is not
straightforward. This requires developing ad hoc techniques for the computation
of their vanishing, such as the excision property. Details are presented in [V4].

We end by computing the vanishing homology groups of Birbrair—Goldshtein
examples (compare with [BB1, §7]).
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EXAMPLE 2.4.2. Let X be the set defined by (1.2) assume that p < q.
Let us compute, for instance, the vanishing homology groups for the velocity
T9. This example is easier, for we may derive the vanishing homology groups
from the classical homology groups of X, since it is NT'9-thin. This implies
that the inclusion HY"(X) — Hy(X) is an isomorphism and that the inclusion
H{"(X) — H;(X) is one-to-one. Therefore H} ' (X) ~ Q and dim H" (X) < 2.
Actually, one generator of Hy(X) has a representative with T9-thin support and
every 1-chain representing a different class has a support whose length is clearly
bigger than TP. This proves that dim H{" (X) = 1.

2.5. The main result. We now come to the main theorem; we compute the
vanishing homology groups. We express them in terms of the homology groups
of some sets X;’s (called “basic sets”). This implies in particular that they are
finitely generated. In particular, this enables us to define an Euler characteristic
type invariant x, (defined as usual) which is a definable metric invariant.

THEOREM 2.5.1.  For any X C R™ closed definable, there exist some defin-
able subsets of X, Xo C -+ C Xgy1 = X such that

HJ(X) =~ Im(H;(X;) — Hj(Xj11)),
where the arrow is induced by inclusion and Im stands for image.

COROLLARY 2.5.2.  For any closed definable subset X, the vanishing homol-
ogy groups H3(X) are finitely generated.

PrOOF. Outline of the proof of Theorem 2.5.1. The proof is constructive
in the sense that we explicitly exhibit the basic sets X;’s. Part of the difficulty
is due to the fact that all through the proof we will have to discuss whether or
not distances belong to v. As v is not definable, belonging to v will not give rise
to definable subsets. To overcome this difficulty we shall add a point w at the
end of v. We extend the language L to the language Lr(u) by adding an extra
symbol u. We then define a 1-type by saying that a sentence 1(u) € Lg(u) is
in this type if and only if the set {z € R : ¢(z)} contains an interval [a ; b] with
a € v and b ¢ v. This type is complete due to the o-minimality of the theory.
We will denote by k, an Lg-elementary extension of R realizing this type, and
by X, the extension of X to k,. We may “extend” the group v in a natural way

w:={z€k,:Jy v, |z| <y}

Thus, the first step of the proof is to show that the v-vanishing homology of
X coincides with the w-vanishing homology of the extension of X to k,. We
also prove that the Nu-vanishing homology groups of X, are isomorphic to the
v-vanishing homology groups of X. Namely, we show the following.

LEMMA 2.5.3.  For any j, H¥(X,) ~ H¥(X,) ~ HY(X).
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This means that we may work with k,. Being u-thin is somewhat weaker than
being w-thin but the above lemma ensures that we will have an isomorphism
between the vanishing homology groups if we eventually get a Nu-admissible
chain.

In the case of intersection homology the basic sets may be defined as the al-
lowable simplices of a barycentric subdivision of a triangulation of the considered
set X. Unfortunately, this will be more complicated for us: it is not enough to
define the X;’s as the cells of dimension ¢ which are v-admissible. We need to
construct a very specific cell decomposition. Therefore, the first step is to prove
that, given some subsets Y7,...,Y,, of R", there exists a cell decomposition of
R™ compatible with the Y;’s and such that every n-dimensional cell is delimited
by graphs of Lipschitz functions &; < & in such a way that (£&2 — & — u) has
a constant sign on the cell. The construction relies on techniques developed
in [V1].

We define the sets X;’s by induction on ¢ (initializing by X_; = @). Fix a
cell decomposition C compatible with the X;,’s j < ¢ such that every cell is
delimited by Lipschitz functions whose difference is comparable with u (for the
order relation <) on the cell. Then, roughly speaking, the set X; may be defined
as the union of the cells which are (¢;v)-thin.

As often with homological invariants, we construct the desired isomorphisms
by means of homotopy operators. The vanishing homology is not a homotopy
invariant. It is preserved by Lipschitz homotopies but these are very hard to
get. We will construct a homotopy carrying a given w-admissible simplex ¢ onto
an Nu admissible simplex. Thanks to the lemma above this is enough for our
purpose.

It is actually too difficult to construct a homotopy for any admissible simplex
o. We are able to construct this homotopy only for strongly admissible simplices.
These are simplices o: T; — X, satisfying for some ¢ and for any A such that
(x+ Xeq) € Ty:

(2.1) (o(z) — oz + Xey)) € v.

Strongly v-admissible implies v-admissible. The difference is that the con-
dition is required on the mapping instead of its image. We first prove that
every v-vanishing homology class has a strongly admissible representative. This
is achieved by introducing and constructing v-admissible rectilinearizations (see
[V4, Definition 2.3.1; Theorem 2.3.3]) which may be considered as a weak notion
of triangulation with an extra property close to (2.1). The proof of existence of
rectilinearizations of v-thin sets follows an idea which is similar to the one used
to yield existence of Lipschitz triangulations in [V1].

We finally construct a homotopy carrying a given strongly w-admissible chain
onto a Nu-admissible one of the cell decomposition C. This is performed by
sending the vertices of T} onto some zero dimensional cells of C. Doing this
sufficiently carefully, (2.1) ensures that the simplex will remain Nu-admissible if
the cell decomposition is as above, i.e., if every cell is either u-thick of u-thin.
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The above isomorphisms of the lemma make it possible to finish the proof of
Theorem 2.5.1. O

2.6.  Local invariants for singularities. In [V2], we introduced the link for a
semialgebraic metric space. Let us recall its definition. We recall that we denote
by k(04 ) the field of algebraic Puiseux series endowed with the order that makes
the indeterminate T positive and smaller than any real number. Given the germ
at 0 of a semialgebraic set X, let Lx := {z € Xy, : |x| = T}, where T' € k(0)
is the indeterminate and Xy, ) the extension of X to k(04 ).

THEOREM 2.6.1.  For any conver subgroup v C k(04 ), the groups H}(Lx)
are semialgebraic bi-Lipschitz invariants of X.

Note that by Corollary 2.5.2 these groups are finitely generated and that
Xv(Lx) is a semialgebraic bi-Lipschitz invariant of the germ X.

REMARK 2.6.2. We assumed in this section that X is a semialgebraic set
because this was the setting of [V2]. Nevertheless, the main ingredient of the
proof of the above theorem is Theorem 5.1.3 of [V1]. As this theorem holds
over any polynomially bounded o-minimal structure, the above corollary is still
true in this setting as well. The metric type of the link Lx may fail to be a
metric invariant of the singularity when the set is definable in a non-polynomially
bounded o-minimal structure as it is shown by the following example.

EXAMPLE 2.6.3. Let
X o={(z;y) €R?:ly=eV/""} and Y ={(z;y) €R?:[y| = ¥},

Note that X and Y are both definable in the In — exp structure (see [vDS], [LR],
[W]). Furthermore X and Y are definably bi-Lipschitz homeomorphic. However
the links of X and Y are constituted by two points of k8+ (where ko, is the
corresponding residue field) whose respective distances are clearly not equivalent.
Note that a revolution of these subsets about the x-axis provides two subsets
whose links have different vanishing homology groups (for a suitable velocity).
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